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Molecular motors interacting with their own tracks
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Dynamics of molecular motors that move along linear lattices and interact with them via reversible destruc-
tion of specific lattice bonds is investigated theoretically by analyzing exactly solvable discrete-state “burnt-
bridge” models. Molecular motors are viewed as diffusing particles that can asymmetrically break or rebuild
periodically distributed weak links when passing over them. Our explicit calculations of dynamic properties
show that coupling the transport of the unbiased molecular motor with the bridge-burning mechanism leads to
a directed motion that lowers fluctuations and produces a dynamic transition in the limit of low concentration
of weak links. Interaction between the backward biased molecular motor and the bridge-burning mechanism
yields a complex dynamic behavior. For the reversible dissociation the backward motion of the molecular
motor is slowed down. There is a change in the direction of the molecular motor’s motion for some range of
parameters. The molecular motor also experiences nonmonotonic fluctuations due to the action of two oppos-
ing mechanisms: the reduced activity after the burned sites and locking of large fluctuations. Large spatial
fluctuations are observed when two mechanisms are comparable. The properties of the molecular motor are
different for the irreversible burning of bridges where the velocity and fluctuations are suppressed for some
concentration range, and the dynamic transition is also observed. Dynamics of the system is discussed in terms

of the effective driving forces and transitions between different diffusional regimes.
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In recent years significant attention has been devoted to
theoretical and experimental studies of molecular motors,
both biological and artificial, because of their importance for
different nonequilibrium processes in chemistry, physics, and
biology [1-4]. A fundamental question related to molecular
motors is to understand how externally supplied energy is
transformed into mechanical motion on the molecular level.
Most of the theoretical studies suggest that molecular motors
move along spatially asymmetric potentials under the influ-
ence of thermal and/or other external forces [1,2]. The ma-
jority of biological molecular motors, also known as motor
proteins, follow this mechanism by hopping along linear fila-
ments and transforming the energy of hydrolysis of adenos-
ine triphosphate (ATP) (or related compounds) to produce a
mechanical work. An alternative possible mechanism of the
molecular motor functioning has also been proposed [5-7].
According to this idea the molecular motor can advance
along symmetric potentials via spatially inhomogeneous in-
teractions with underlying linear tracks. Recent experimental
observations indicate that a protein collagenase might utilize
this mechanism to power its motion [8,9]. The collagenase
moves processively along collagen fibrils by using asymmet-
ric collagen proteolysis. The molecule catalyzes the dissocia-
tion of the filament at specific positions, and at the end of the
process it is always found on one side of the cleavage site.
Between the proteolysis sites the molecule jumps with equal
probability in both directions. However, because the collage-
nase cannot cross backward the already destroyed bond, this
leads to an effective biased diffusion in one direction [8,9].
Similar phenomena are also observed in other biological sys-
tems where transport of molecules is assisted by asymmetric
nucleation of hydrolysis waves [10].

Theoretical analysis of the collagenase transport sug-
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gested that its dynamics can be well described by so-called
“burnt-bridge” models (BBM) [8,9,11-15]. In this approach
the molecular motor is viewed as a random walker hopping
along the discrete lattice composed of strong and weak
bonds. The particle might break the weak links after passing
over them, while the strong bonds are not affected. Although
the current theoretical picture provides a reasonable descrip-
tion of collagenase dynamics [11-15], it has a significant
conceptual problem by assuming the irreversibility of the
burning process. Collagenases are catalytic molecules that
accelerate both forward and backward proteolysis transitions
[4]. In addition, only unbiased random walkers have been
considered so far. In this paper we analyze the mechanisms
of how molecular motors can move along the linear tracks by
asymmetrically breaking and rebuilding periodically distrib-
uted weak bonds. It is found that coupling between these
nonequilibrium processes leads to several unusual phenom-
ena such as dynamic transitions, strong or suppressed fluc-
tuations, and the reversal of the motion direction.
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FIG. 1. A schematic picture of the reversible burnt-bridge mod-
els for the transport of molecular motors. Thick solid lines represent
strong bonds, while thin solid lines are for weak bonds. Dotted lines
correspond to already destroyed links. Weak bonds are periodically
distributed every N site.
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In our model we consider a molecular motor molecule as
a random walker that translocates along the one-dimensional
lattice, as shown in Fig. 1. The lattice consists of strong and
weak links (bridges). The weak bonds are periodically dis-
tributed, i.e., the concentration of bridges is ¢=1/N. The
molecular motor always moves with the rate u (w) to the
right (left) while passing over the strong links. However, the
dynamic rules for crossing the weak links are different.
When the particle crosses the weak link in the forward di-
rection (from left to right) it does it with the rate u, and the
bridge can be burned with the probability p;. The rate of the
backward transition via the weak bond is w. The particle
after the already burnt bridge (for example, at the position 0
in Fig. 1) might attempt to move backward. The bridge can
be recovered with the probability p,, and the particle moves
one site to the left with the rate w. However, with the prob-
ability (1-p,) the attempt might fail, and then the particle
stays at the same site. Note that in the case of p,=1 there is
no coupling of the molecular motor motion with the bridge-
burning processes.

Explicit calculations of dynamic properties of molecular
motors in reversible BBM can be performed using methods
developed earlier [13—-15]. However, to highlight the physics
of interaction between molecular motor’s transport and dis-
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sociation of weak links we consider a simpler case of p;=1
and arbitrary p,, which corresponds to deterministic burning
and stochastic recovery of bridges. Then the motion of the
molecular motor can be viewed as hopping on the periodic
lattice (with the period N). All forward rates are equal to u,
while the backward rates are w with the exception of the
crossing the burned bridge that has the rate wp,; see Fig. 1.
The dynamic properties of a single particle on periodic lat-
tices are known exactly [16], and these results can be used to
compute the properties of the molecular motor in reversible
BBM. The mean velocity for p;=1 is given by

. wips= )1 - B
(B =p2)(1=B) - c(1= 1)1 = p,)’

where B=(u/w). For the case of an unbiased random walker
(u=w) this equation simplifies to

(1)
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Similar calculations can be done for the dispersion D. Spe-
cifically, for u=w=1 one can obtain
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while for the general rates u and w and for p,=0 it can be shown that
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bridges on dynamics of molecular motors first we consider
the unbiased particle hopping with the rates u=w. The results
for the dynamic properties are presented in Fig. 2. After
burning the bridge the molecular motor has a nonzero prob-
ability of not moving to the left, while it can always freely
hop to the right. This interaction between the unbiased mo-
lecular motor and the linear track produces an effective force
that breaks the symmetry and drives the particle in the for-
ward direction. As expected, increasing the concentration of
weak bonds and/or lowering the recovery probability p, ac-
celerates the particle motion; see Fig. 2(a). Simultaneously, it
lowers particle fluctuations because the mobility of the mo-
lecular motor is decreased at the sites after the dissociated
bond. However, an usual behavior is observed in the disper-
sion in the limit of very low concentration of bridges. For
the lattice without weak links one expects D(c=0)
=(u+w)/2=u, but the dispersion of the particle in reversible
BBM goes to another limit. For example, for u=w=1 from
Eq. (3) it can be shown that

3(1 +l72)2

which is not equal to D(c=0)=1 for 0=p,<1. There is
always a gap in the dispersion in the limit of ¢—0. This
jump in the dispersion is an indication of a dynamic transi-
tion between two regimes: for c=0 the molecular motor ex-
periences the unbiased diffusion, while for any nonzero con-
centration of weak bonds the system is in the biased
diffusion regime. Symmetry breaking is an important part of
this dynamic transition.

More interesting dynamics is observed when the molecu-
lar motor that diffuses to the left is put on the lattice with
weak links that generate an effective force in the opposite
direction. The dynamic properties for the system are given in
Fig. 3. For any nonzero probability of recovery the mean
velocity of the molecular motor is increasing as a function of
the concentration of bridges, i.e., the particle moves slower
in the backward direction [see Fig. 3(a)]. For some values of
p, the driving force by reversible burning of bridges
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FIG. 2. (Color online) Dynamic properties of the unbiased mo-
lecular motor with u=w=1: (a) The mean velocity as a function of
the concentration of bridges for different recovery probabilities; (b)
the dispersion as a function of the concentration of bridges for
different recovery probabilities.

becomes so large that it changes the direction of the parti-
cle’s motion. The critical concentration ¢* at which it takes
place can be found from Eq. (1), ¢*=In B/1n p,. It also indi-
cates that the direction reversal can be observed only when
p>»= B=u/w. At the critical concentration the effective force
of the asymmetric burning mechanism becomes equal to the
backward force of the original molecular motor’s motion [4].
When the bridge burning becomes irreversible (p,=0), the
mean velocity behaves differently. The particle always
moves forward even for the smallest concentration of weak
bonds. It can be derived from Eq. (1) that

WIBI/C(I _ﬁ)Z
c(1-p")-p"(1-p)

for all nonzero concentrations, which differs from V(c¢=0)
=u—w<0. This observation can be explained by looking at
the details of the particle’s motion. The molecular motor
mostly moves backward, but sometimes it diffuses in the
forward direction. Crossing the weak bond breaks it and the
particle becomes locked in a new position because of irre-
versibility, creating the effective motion to the right. In the
limit of very low concentrations the velocity is decaying ex-
ponentially to zero, V=wpB"¢(1-B)?/c—0. This result sug-

V(p,=0)=
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FIG. 3. (Color online) Dynamic properties of the backward bi-
ased molecular motor with #=0.2 and w=0.8: (a) The mean veloc-
ity as a function of the concentration of bridges for different recov-
ery probabilities; (b) the dispersion as a function of the
concentration of bridges for different recovery probabilities.

gests that the bridge-burning mechanism starts to work effi-
ciently only for concentrations larger than In(1/8)=In(w/u)
after overcoming the driving force of the backward biased
diffusion.

The behavior of the dispersion of the backward diffusing
molecular motor on the lattice with weak bonds is more
complex, as shown in Fig. 3(b). Although the particle mostly
jumps to the left, sometimes fluctuations in the positive di-
rection bring it to the right close to the next weak bond. After
burning the bridge the motion of the particle to the left is
significantly reduced, and this large positive fluctuation is
locked, leading to an increase in the dispersion as a function
of c¢. However, the molecular motor sitting after the burned
bridge experiences lower mobility that reduces its dispersion.
The interplay of these two mechanisms explains the behavior
of the dispersion. For low recovery probabilities p, and low
concentrations of bridges the locking mechanism dominates,
while for large p, and c¢ the reduced mobility is the main
factor affecting fluctuations. Surprisingly, we found that
when the contributions of both mechanisms in the dynamics
of the molecular motor are similar the particle might experi-
ence very large fluctuations as p, —0. For the irreversible
burning of bridges (p,=0) the locking mechanism dominates
at all concentrations. In the limit of ¢ — 0 one can show from
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Eq. (4) that D=wgB"(1-)?/(2c?) —0, i.e., the fluctuations
are suppressed for concentrations less than In(1/p8)
=In(w/u) until the effective force of the burning mechanism
overcomes the backward driving force of the molecular mo-
tor. Again, for the irreversible burning and ¢=0 there is a
dynamic transition. In this case, both V and D have gaps at
c=0; see Fig. 3. This transition separates the backward bi-
ased (c=0) from the forward biased motion (for ¢ #0). It is
interesting to note that for the finite probability of recovery,
p> >0, there are no indications of the dynamic transition. At
the critical concentration ¢* the dispersion is a smooth func-
tion without any singularity.

In conclusion, we have investigated the transport of mo-
lecular motors that interact with their own linear tracks using
discrete lattice models that allowed us to calculate explicitly
the dynamic properties of the system. The coupling between
nonequilibrium processes of the molecular motor motion and
dissociation of weak links on the lattice leads to a complex
dynamic behavior with dynamic transitions, inversion of the
direction of the motion, and increasing or suppressing fluc-
tuations. The asymmetric burning of bridges creates an ef-
fective force that stimulates the motion of the molecular mo-
tor in the forward direction. For the unbiased molecular
motor the interaction with weak links increases the velocity
and decreases the dispersion as a function of the concentra-
tion of bridges. Similar trends are observed for increasing the
nonequilibrium character of the weak bond dissociation by
lowering the recovery probability. The dynamic transition
between biased and unbiased diffusional regimes has been
found in the limit of low concentration of bridges, as indi-
cated by jumps in the dispersions. The coupling of the back-
ward moving molecular motor with the forward-directed
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burning mechanism lowers the backward velocity with in-
creasing the concentration of bridges, and for some recovery
probabilities the direction of the motion even can be re-
versed. It has been shown that the behavior of fluctuations in
the system can be explained by two dynamic mechanisms:
(1) lowering the particle’s mobility at the sites after the
burned bridge due to lower probability of recovery that de-
creases the fluctuations; and (2) locking large fluctuations
that increases the dispersion. The interplay between these
mechanisms leads to a nonmonotonic behavior in the disper-
sion with very large spatial fluctuations when contributions
from both mechanisms are similar. The dynamics of the sys-
tem is different for the irreversible burning of weak bonds. In
this case the dynamics is governed by the locking of fluctua-
tions mechanism that also produces jumps in the velocity and
in the dispersion in the limit of very low concentration of
bridges. For a large range of concentrations the velocity and
fluctuations are suppressed until the effective force of the
burning mechanism overcomes the backward diffusion force
of the molecular motor. Thus the dynamics of molecular mo-
tors strongly depends on the degree of irreversibility of the
coupled bridge-burning mechanism. It is important to note
that the dynamics of the single molecular motors has been
analyzed in this paper. However, it will be interesting to
investigate the effect of the coupling of many molecular mo-
tors with asymmetric dissociation of links in order to better
understand the fundamental nature of these nonequilibrium
processes.
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